![]() ![]() ![]() ![]() |
![]() |
Welcome to the GSM-Forum forums. You are currently viewing our boards as a guest which gives you limited access to view most discussions and access our other features. Only registered members may post questions, contact other members or search our database of over 8 million posts. Registration is fast, simple and absolutely free so please - Click to REGISTER! If you have any problems with the registration process or your account login, please contact contact us . |
|
Register | FAQ | Donate | Forum Rules | Root any Device | ★iPhone Unlock★ | ★ Direct Codes ★ | Direct Unlock Source | Search | Today's Posts | Mark Forums Read |
GSM Programming & Reverse Engineering Here you can post all Kind of GSM Programming and Reverse Engineering tools and Secrets. |
![]() |
| LinkBack | Thread Tools | Display Modes |
![]() | #1 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | Samsung EngineeringMode... eToken ![]() Noob need some help with research... DRK chain... CertS... RSA 2048... CN EngineeringMode... Code: rootca.der aka SamsungDeviceRootCAKey_RSA2048.der aka SamsungDeviceRootCAKey_RSA_2048.der aka ... Maybe I need some AES CTR exercises... seems DASEUL crypt something... Maybe somebody can help my tiny brain... ![]() Thanx in advance. Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() | #3 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | Meanwhile found the Kiwibird Cert + private Exponent... So for older steady.bin I have 2 certs and 2 priv exponents to play with... Only as info. Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() | #4 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | Please need help. For tiny experiment I need Tool or script to create big Prime Numbers in HEX... 128 Byte lengths The idea is BETWEEN: Code: A000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 Code: FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF I have "few" Tools to this by stupid clicling... and random... but I need ALL primes... Example for few big Primes in this "dream area": Code: F06E83B71E1565AC17274E245771A672347AE49AE1CAA25BDB06C0F3B172DE442BB55B0AB813D363D99C4A748F382299668EE49A3AC599E1927E50ADB64EA4AFFDBF6509839B7E1ABFAF367CE77A0D07869B6A90DC8A097B899D25BF78AB52B67BA47DCDE1386C407898D969AF7E19B87CDB031831CA500D77E44641C9D31967 F32C5F9E36BE948AEB8F387ACD4630FFBF31593A2CE2384338FBE2A592A36E1A529B82BF48707D10E2130DD6784E9A7D4D021A8785ED03C0E4D0A880B27E0FA1ECB8D7D69C298521DB6B3DA5CBC2DB75F178B00C009CCC145030B46CC9402B793C768E7B1FCCF366A4FFB4880F3BB182A12F983941E32F4794FFA4111336FE3B F3C0626C1B75DE0F323E11225E196A56B631438EDAC6E7156E5F8EFAF1EC426EFE713664F227C33445F73116E2932B1364738B08FCCB10B8CC29C21937CAF44934981EBC02CF27E749E27D9A22E6E02D252FA3538D3637F3681179CD865358AE047063A5A5D32FEAE8EAE7D7ABA809B652BFCAEC0BABE130797591F4CFC81689 F41597837785A0C83789CFDE0A1E05BC053C6328F6F435B4C6F9678640B42790DE6CE8C0467CDBB0A2D238B429DF66CFBA6DC8645283C4A27D3CD29C5E52B108ED97310648DB0962E6A1721AE50CD6FBB1C8DC018751B5A29A423C78D5CB9B2B61E6B00E44D931EDCE971D092450D7561E892DC6B4AB3099EBCC36EB12272FAF FF933182932492BFB4928D3BED4496AEA9E89A254D6EE3E2D8741770CEDED7A1F5EA846E0BF30D7A191D60C086898D976B5A2547B7FD4F345502DD378068349569756AD6AD4C96B826D4CE966477D6A9E23582DEB7E050CCE3B858D92254F02AEBC7B0E7F57C46B1ED7DCBC43810E74626E72A520FD749BFB6D1FCA8D53EF9CF Thanx in advance. Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() | #5 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | Interesting example for "random" Cert/Key creation from DRK world... ![]() I am too lazy for all RSA 2048 Modulus... but here few: Code: 8C5B29DBE2165F2B95A85F1DF9107D9F844D2FCBB87C283569D1DA98182C5CE99799E1E1F802FC213EE5E65F885E7AA0B7DB4206F246C36781C2A9D854D1014AA3A3F601C179ED09AC419AF58594BE5E997B340FB195CCDE116D6EB55EABEA25923CD54CACF672D3303DFA2CDCD0CB74F06C5FB78726389BAD407EAE484BFEAB6083830190A28646577D4EAF88C2D8C837C642202BB5F65E8508CF261A20DE1D1D11F6E0195EDF7B0FA5AD5D97CBCECF207EB9268AB4500345E5A712411460C387CE0A5733D9EAC572171D23D2299B2365D1BAEF386878BE391A4E95BFEC686955F430084E50CE739B7954FD800E6DDCB424B67DFD037072D21FA3D2AA51C42F 8C5B29DBE2165F2B95A85F1DF9107D9F 915A0131844C32F9DCAD00B0D65749F0E9AAB55ECDD96454998C3794D859D60209AA85A3968C16EFEE69BE3D3FD90DDA97E853F50C9DF384B1AEEE67F5D9F43A6F098FA2B045659738C94AFB143024E73E53131B41EE12BA2A1269D1FBB604B2EC64466F2E6D4BE5190478FC35C49F6C067D7F0AEFE3A46ED2E67C31516460FCFC84CA6DDC926A34AB04FF1665B20E4049CF1B5FE1595BC661075C731389BE202409FC1D22ABD9424F7F3E7D563C14DF573231C374EBDF76D6695B320568587FD683643BE798EF8AA5CDD60FBEB90B825CCCF68ED3F15F498CA60DBB523D72C6ABC1CB8D57906B66055B57031AD43E817C61C35F846A2AEA85F5F0FBFF15AD9F 915A0131844C32F9DCAD00B0D65749F0 90802DFB83CAE83D812BEC9FB2469E8CAA33BE63AD95E41AFDCECEFA40A869B34204F56819DDDCEF31D6FC565D473A5AE0E460F10EBF7401E0AC9A98F3094C369EE136841CCB84F1D5D05D41B7EB8A9A771E228BE40D32D92A093FB90D623A5148D2320BF39500543BDD8649B38FB598B8644ECB85BE45520BDDD7468D8960FA338845B97D0A598915DB7E08478EC0CB67065F4EEE0A29318DE53C7958E3538E321AB79F5EC2EEEA650CCEA9BBCBB942B74440305EF02431D12C6411A6AB7F3F1A1FDF8BBF7899EEEBF8990DC3C6E59A8218D10BA16C8BC2A8FEFDAAB995891607969453B6A3B7FE6CF6B79478F57D236996D2F766698BF816BC737B6EC55773 90802DFB83CAE83D812BEC9FB2469E8C 98D83948C4F6A201DA6113DB41DDED71B9863D801B7ACB6EBDC85DA24839F18A30FB72CF439657BFB6AC70BF53B7E02FB3C13547886C7A9E1559C1E1ECF3A048D620013E52BD39A50C1134E539F2376EB4048ADE98E134B05E22967AB82996AC309B992F382905970743222B82686179D0229A43D74D150BA30AD665D180616904F90ED9D0272C9EC3DC1A52181B5CC5CF1E1ECC4BAAA696FA03256402DFD0D5AF554CAA289FD4D721B790A098AA9CB8864E7B2B611FF9EF4C13566CE10834E3697CE8E84ED2D5A95FAFC374D3AEFAF9E0FA4E28C1EADC2D4E6AFE7199012553FC249962B531F571F9E4FEF550C298C08257A9FCFD6F02458BB9954360B5450D 98D83948C4F6A201DA6113DB41DDED71 8C2B18B2309E68B299B12715FAEBFBD51C1287F4F0CD6E38BB8F930DD0759CD97854E3C1EB885974F5BB6C29410FCFD060D2A3664ABDF2E6D0DE3464FCE55192B5943D9E34966FF91450D92CB97B108E68AC24CA30D36B5CB2CD84FC85602B602A65CB3D2E46775896F41E44257D1FB0AFECAFDAB9BBA5B2FA46FF0D2A7A732778889D7917DC965B956BD45441FBBB85463F50605E4A34C7A0BF8647514DBF1721F362C4DB02EEFA0DDB01ADD5B48CD76952FBA79C139A721F434B378E5E98FD54343111412CDB0AE06211E6AD3CF62B117F7778B7D5BE5F4788106F9E7A096FF650A3C9223A2046739F7D778F70434E56C0EB0F4D4D960F8D0C4B3FDCA38919 8C2B18B2309E68B299B12715FAEBFBD5 8797CACD8DA48C9BF4CDD49D4A5262CF8FD29722AB646F8FE229DCF1954589F706711F8C3DF736668D5AE12F3E7782C49011E2FEE7A7C576910FFC9624E783A272DB8630125EF325C4A1D815946D3FF7104218CB439F34629C8338D782E297C4D396721325C8B30D352316CC7C14C38FC6CF40386B7A6379F291DD3F0563BCA202EE609B7B37B0E72D44D1A0F7C3FA05944DFE9D4206547FFA7A224077CD1A5E7A15F93174E63AEECF2E6B73578271892BFD45035E3C7BEED7A8853BC07F2F1C39E6EE5BF4157A08A0BBFDB78A05C9B2F7E1542EBEA59D396E9D9DA4E2E04EBB1F5134EDD2BD220AC0B5BC35CE3CC287372108FA0460AA0138DE40A6BD118D2D 8797CACD8DA48C9BF4CDD49D4A5262CF 858BDA623ABC915F14DAC317942CF4E5A955CD70CC4D551ABBA6117733FA9BDF376A3E1621C6474306BB98B0EDD19BA4364A8667D15895F99FFBBE0AB8C2A3B692B70E378EF837F116E37D1F21D47B6E31241D2CB942C20F6302E32068A786AC68437F63DCA762BCC7C7CB920320D878948F29EFD048FAAA03D37AA9EFBC0A2A585750C11FF2FFEEC3943C9F68004008BA72DC72A594665927138EDDCE5546BD59F7D2FF00BBD7353FD1E1A98EC6D2D5A743EFE4250263F62F0233F9327A2FF20CF9938D041E3B8D071357E694773C53DB45FBC1D3065C878E73BBE777C2A3BCD3FE5D383B9B233DAAE138DF8D6F8C4E2EA041091470F771CC76798B517F3F0F 858BDA623ABC915F14DAC317942CF4E5 The shorter is 16 Byte as Search HEX value or text string... instead the 256 Byte Modulus... Only as info... Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() | #6 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | I have NOT many device(s) at home for tests... Photos from my SM-A202F Bootloader Version U3. ENG and Custom Mode no idea yet... maybe better if Knox not 1... But FACTORY BIN ALLOWED tested successfully by flashing different Combination Firmwares... I have NO luck yet with my SM-G965F Bootloader Version UH aka 17 Tested also SH is also 17... but also no success... I can not downgrade nor find Combination Firmware for BL Version 17... only 11 leaked... Only as info of progress... Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() | #7 (permalink) |
Junior Member Join Date: Jun 2019 Location: nanpara
Posts: 14
Member: 2912966 Status: Offline Thanks Meter: 2 | check this link https://shorturl.at/abpAU |
![]() |
![]() | #9 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | Code: Prime number (Bitsize: 0) (*): p ============================================================= hex ==== F5870E6F89EB6D4F1F30DCF994508385B53F2609A4C3C8749E37019E959190B51D99AB7F29A3C4FE583BD118AA1BD662B4795ABCF7646B06EBD447152FC51604202EA498C4AFE6DFBBC5016DC166E114CA38E6B82D1B7392D8C30D68B3D956BD9B2D4ADBF3FA3B74254F81F0C0EB7C5E7C99ACC5A05E9C146AEAF9AEF4798D95 Prime number (Bitsize: 0) (*): q ============================================================= hex ==== EA58AF11D3137E8B192002E791D7284054FE79BC8628AB589A34B9039A5127CA25E1A8B9CB05E0F926DF8B63847C57FA5362AE4FEF2511F3A2F493D506FB972323D5D4ED5E5F30F27A170FC5A88D75DBA8D35684BE9C22D28E9235C60035FBBAFC86E27ABCF1269BB38B8B198B8FE8EE728FA569097B4285481F53D5F340AF88 Modulus (Bitsize: 2048): n=p*q ============================================================= hex ==== e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf38b901d6d0c79b4f8ea6a25cb2a94c21d368837a00332fb5e458aa580959ac655c8992a9039f0321d59b320cbc04f1b40b37df34d0ee1653cce23a67685493932eef27ae0d102291843323aebfc3ddc24bcd055cfd966cdc9f902666c66001e9cd85912368a4d9b6bc65b6324c7560b3813aff62b7831e076ca64d9d1cc9c1228 Euler's phi(n) function (*): phi(n)=(p-1)*(q-1) ============================================================= hex ==== Public exponent: e [1 < e < phi ; e and phi are coprime] ============================================================= hex ==== 10001 Private exponent (*): d=(e^-1) mod phi ============================================================= hex ==== 535e325775a41b09b846314b46567a22e4a7cd93063969ded91c19f6913d18f33370f0fcb64369376ecf7c4ebd22964e9b7cfbbd07bb2d471d50ac3ed4320670dc27bfc9f9c24abeaea01f1bff9b654b601a51a5a0b62fe913148b428b9ea1f386399b18c44170679e22851982a6621d4cdc240bc7b4323f4fc73ab5afa75ab8509bc268949571c64dff6bdc6ab9dfe083d043550d90d3b62cecbbe7b44939f0c93d91049bf098096e747edf98c8064448a46d5450e292870822f07f619dea7c657194d502d2b72489cbdcfbd65f28e6853a1477636c6b9a85227880e8e0cd87e0e688f2b31a68f63d392e36f23ce9f037832d8e972733c1c368d5c3abde4c7d Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1) ============================================================= hex ==== 8cd698e04053ec92db48732932fb70464d6e58ca6559eced8027fb64d554f795fcd1be3f264a8be07e0a69e9e5022cdad7bd58e05664a2c40898eee167527d4b868e5ada4ad0bff58cc6f807d64dc644dfaefe219db6467870a08a5b89f6dcbbcc7c919953fd310771b386ccec4ce83d66e9dbe24d18981d5a2b496823526a75 Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1) ============================================================= hex ==== 3c242451cbbcbe060e9da38130716a381057fa8002621f8f2e8c074b40684170e485e41a425b30e06034907e2abb0a8d08a7539ada01c678a342674a0d6fb5dae3d075c3b12b76d153b9e5675199743cba37fa8538b1b3521c1ab3c82bb7aef1ceeb02e682e4d486b2ee45f57956a66dc362d00d83cc6946f13a70f680660266 Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p ============================================================= hex ==== 485871831a67bf7a19de16bee8de83079cc72cebfeff90649c414a719236312ec29faf4fb06127dabba51909f6b5e09c73a684eca0dcba032e79156a47723ed0c6f40f95880c412c203724a2b43b75826ee229e43da24a979fb0de2a91fde360608c16d572ab8a4940c8d9e62146df8efd0e9c45ff5b3b4faee72ee3d536992f Plaintext: ====================================================================== Message: m ============================================================= hex ==== Ciphertext: c = m^e mod n ============================================================= hex ==== Time to encrypt the message (m): ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key A: ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key B (CRT): ============================================================= sec ==== (*) Keep this information secret! Tiny progress... ![]() Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() | #10 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | Code: Prime number (Bitsize: 0) (*): p ============================================================= hex ==== F5870E6F89EB6D4F1F30DCF994508385B53F2609A4C3C8749E37019E959190B51D99AB7F29A3C4FE583BD118AA1BD662B4795ABCF7646B06EBD447152FC51604202EA498C4AFE6DFBBC5016DC166E114CA38E6B82D1B7392D8C30D68B3D956BD9B2D4ADBF3FA3B74254F81F0C0EB7C5E7C99ACC5A05E9C146AEAF9AEF4798D95 Prime number (Bitsize: 0) (*): q ============================================================= hex ==== EA58AF11D3137E8B192002E791D7284054FE79BC8628AB589A34B9039A5127CA25E1A8B9CB05E0F926DF8B63847C57FA5362AE4FEF2511F3A2F493D506FB972323D5D4ED5E5F30F27A170FC5A88D75DBA8D35684BE9C22D28E9235C60035FBBAFC86E27ABCF1269BB38B8B198B8FE8EE728FA569097B4285481F53D5F340AF88 Modulus (Bitsize: 2048): n=p*q ============================================================= hex ==== e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf38b901d6d0c79b4f8ea6a25cb2a94c21d368837a00332fb5e458aa580959ac655c8992a9039f0321d59b320cbc04f1b40b37df34d0ee1653cce23a67685493932eef27ae0d102291843323aebfc3ddc24bcd055cfd966cdc9f902666c66001e9cd85912368a4d9b6bc65b6324c7560b3813aff62b7831e076ca64d9d1cc9c1228 Euler's phi(n) function (*): phi(n)=(p-1)*(q-1) ============================================================= hex ==== Public exponent: e [1 < e < phi ; e and phi are coprime] ============================================================= hex ==== 10001 Private exponent (*): d=(e^-1) mod phi ============================================================= hex ==== 535e325775a41b09b846314b46567a22e4a7cd93063969ded91c19f6913d18f33370f0fcb64369376ecf7c4ebd22964e9b7cfbbd07bb2d471d50ac3ed4320670dc27bfc9f9c24abeaea01f1bff9b654b601a51a5a0b62fe913148b428b9ea1f386399b18c44170679e22851982a6621d4cdc240bc7b4323f4fc73ab5afa75ab8509bc268949571c64dff6bdc6ab9dfe083d043550d90d3b62cecbbe7b44939f0c93d91049bf098096e747edf98c8064448a46d5450e292870822f07f619dea7c657194d502d2b72489cbdcfbd65f28e6853a1477636c6b9a85227880e8e0cd87e0e688f2b31a68f63d392e36f23ce9f037832d8e972733c1c368d5c3abde4c7d Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1) ============================================================= hex ==== 8cd698e04053ec92db48732932fb70464d6e58ca6559eced8027fb64d554f795fcd1be3f264a8be07e0a69e9e5022cdad7bd58e05664a2c40898eee167527d4b868e5ada4ad0bff58cc6f807d64dc644dfaefe219db6467870a08a5b89f6dcbbcc7c919953fd310771b386ccec4ce83d66e9dbe24d18981d5a2b496823526a75 Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1) ============================================================= hex ==== 3c242451cbbcbe060e9da38130716a381057fa8002621f8f2e8c074b40684170e485e41a425b30e06034907e2abb0a8d08a7539ada01c678a342674a0d6fb5dae3d075c3b12b76d153b9e5675199743cba37fa8538b1b3521c1ab3c82bb7aef1ceeb02e682e4d486b2ee45f57956a66dc362d00d83cc6946f13a70f680660266 Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p ============================================================= hex ==== 485871831a67bf7a19de16bee8de83079cc72cebfeff90649c414a719236312ec29faf4fb06127dabba51909f6b5e09c73a684eca0dcba032e79156a47723ed0c6f40f95880c412c203724a2b43b75826ee229e43da24a979fb0de2a91fde360608c16d572ab8a4940c8d9e62146df8efd0e9c45ff5b3b4faee72ee3d536992f Plaintext: ====================================================================== Message: m ============================================================= hex ==== Ciphertext: c = m^e mod n ============================================================= hex ==== Time to encrypt the message (m): ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key A: ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key B (CRT): ============================================================= sec ==== (*) Keep this information secret! Tiny progress... ![]() Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() | #11 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | Code: Prime number (Bitsize: 0) (*): p ============================================================= hex ==== F5870E6F89EB6D4F1F30DCF994508385B53F2609A4C3C8749E37019E959190B51D99AB7F29A3C4FE583BD118AA1BD662B4795ABCF7646B06EBD447152FC51604202EA498C4AFE6DFBBC5016DC166E114CA38E6B82D1B7392D8C30D68B3D956BD9B2D4ADBF3FA3B74254F81F0C0EB7C5E7C99ACC5A05E9C146AEAF9AEF4798D95 Prime number (Bitsize: 0) (*): q ============================================================= hex ==== EA58AF11D3137E8B192002E791D7284054FE79BC8628AB589A34B9039A5127CA25E1A8B9CB05E0F926DF8B63847C57FA5362AE4FEF2511F3A2F493D506FB972323D5D4ED5E5F30F27A170FC5A88D75DBA8D35684BE9C22D28E9235C60035FBBAFC86E27ABCF1269BB38B8B198B8FE8EE728FA569097B4285481F53D5F340AF88 Modulus (Bitsize: 2048): n=p*q ============================================================= hex ==== e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf38b901d6d0c79b4f8ea6a25cb2a94c21d368837a00332fb5e458aa580959ac655c8992a9039f0321d59b320cbc04f1b40b37df34d0ee1653cce23a67685493932eef27ae0d102291843323aebfc3ddc24bcd055cfd966cdc9f902666c66001e9cd85912368a4d9b6bc65b6324c7560b3813aff62b7831e076ca64d9d1cc9c1228 Euler's phi(n) function (*): phi(n)=(p-1)*(q-1) ============================================================= hex ==== Public exponent: e [1 < e < phi ; e and phi are coprime] ============================================================= hex ==== 10001 Private exponent (*): d=(e^-1) mod phi ============================================================= hex ==== 535e325775a41b09b846314b46567a22e4a7cd93063969ded91c19f6913d18f33370f0fcb64369376ecf7c4ebd22964e9b7cfbbd07bb2d471d50ac3ed4320670dc27bfc9f9c24abeaea01f1bff9b654b601a51a5a0b62fe913148b428b9ea1f386399b18c44170679e22851982a6621d4cdc240bc7b4323f4fc73ab5afa75ab8509bc268949571c64dff6bdc6ab9dfe083d043550d90d3b62cecbbe7b44939f0c93d91049bf098096e747edf98c8064448a46d5450e292870822f07f619dea7c657194d502d2b72489cbdcfbd65f28e6853a1477636c6b9a85227880e8e0cd87e0e688f2b31a68f63d392e36f23ce9f037832d8e972733c1c368d5c3abde4c7d Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1) ============================================================= hex ==== 8cd698e04053ec92db48732932fb70464d6e58ca6559eced8027fb64d554f795fcd1be3f264a8be07e0a69e9e5022cdad7bd58e05664a2c40898eee167527d4b868e5ada4ad0bff58cc6f807d64dc644dfaefe219db6467870a08a5b89f6dcbbcc7c919953fd310771b386ccec4ce83d66e9dbe24d18981d5a2b496823526a75 Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1) ============================================================= hex ==== 3c242451cbbcbe060e9da38130716a381057fa8002621f8f2e8c074b40684170e485e41a425b30e06034907e2abb0a8d08a7539ada01c678a342674a0d6fb5dae3d075c3b12b76d153b9e5675199743cba37fa8538b1b3521c1ab3c82bb7aef1ceeb02e682e4d486b2ee45f57956a66dc362d00d83cc6946f13a70f680660266 Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p ============================================================= hex ==== 485871831a67bf7a19de16bee8de83079cc72cebfeff90649c414a719236312ec29faf4fb06127dabba51909f6b5e09c73a684eca0dcba032e79156a47723ed0c6f40f95880c412c203724a2b43b75826ee229e43da24a979fb0de2a91fde360608c16d572ab8a4940c8d9e62146df8efd0e9c45ff5b3b4faee72ee3d536992f Plaintext: ====================================================================== Message: m ============================================================= hex ==== Ciphertext: c = m^e mod n ============================================================= hex ==== Time to encrypt the message (m): ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key A: ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key B (CRT): ============================================================= sec ==== (*) Keep this information secret! Tiny progress. Only as info.... Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() | #12 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | https://github.com/shakevsky/keybuster Maybe somebody knows keybuster and/or allready have libterrier aka Reactivation Lock Primes and/or Private Exponent... ![]() Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() | #13 (permalink) | |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | I still need 1024 bit prime generator... Maybe here: https://pypi.org/search/?q=big+primes&o= https://pypi.org/search/?q=prime&o= Best example I found. But not for big primes... I need few primes in range... https://www.mobilefish.com/services/...or_checker.php
Maybe somebody could help me. Thanx in advance. Best Regards | |
![]() |
![]() | #14 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | Hmmm.... This looks funny.... Need to be confirmed but... Maximum 1024 bit Integer seems Prime... And why Prime 2 looks like 50 % of Modulus? Code: Prime number (Bitsize: 0) (*): p ============================================================= hex ==== FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF Prime number (Bitsize: 0) (*): q ============================================================= hex ==== E0C2818755AFD2D1E08DA3728023B9F63180DF093106DB52B0985A986B1E5CF3506D66BF82A3AB26427B5A0DBA063FE4E40E8655A77A59A4C3D56DC29BC37EC0383343C3BC8508AD65EAEF5F68994CC4E75D5595E4830E2812169FD4C4C66C0CEF1C0980C1B5F93542E7C7EECF863A05DD941BACC27CDB20216E6C6AA43B8BF4 Modulus (Bitsize: 2048): n=p*q ============================================================= hex ==== e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf31f3d7e78aa502d2e1f725c8d7fdc4609ce7f20f6cef924ad4f67a56794e1a30caf9299407d5c54d9bd84a5f245f9c01b1bf179aa5885a65b3c2a923d643c813fc7ccbc3c437af7529a1510a09766b33b18a2aa6a1b7cf1d7ede9602b3b3993f310e3f67f3e4a06cabd1838113079c5fa226be4533d8324dfde9193955bc4740c Euler's phi(n) function (*): phi(n)=(p-1)*(q-1) ============================================================= hex ==== Public exponent: e [1 < e < phi ; e and phi are coprime] ============================================================= hex ==== 10001 Private exponent (*): d=(e^-1) mod phi ============================================================= hex ==== 69f1c574b1a34b50baf488d2f42be300759d3584f3a333c6ea8f26452a59099f778dda1cf3cb8a6562791a9dd5ce14582457e46283ab5c8e19f184e772dcd7e66b975e9de9431c30001699f6f32b2fd0b0ee81e541edb4c296a42b7af3b64440648566c5568a1c8a4a9b4ed6f6e3627e594ff32ba0119288b6b982495258ef422c1d75159cba695d8a17ee5917a939fe14c694f518ba98712ae2b374ab4eecc010e54bc51869eb343b0ecac35464d74eb7513739f8aa46e2cc1df6301a47503228d242c32d7ac79effd3cc1119aaa05d9e23fc347c259679d2b8a9091894777e36f6327452ecc6ea6aca6251123a3b024d6119a7bfdddaed928dfb6c5b4f2179 Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1) ============================================================= hex ==== ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1) ============================================================= hex ==== 76d0bc12a40c878125991a9f8bf7d6f5bbe3a9843d63a78bc609345340c55353d8df8ca28ed820c0e0023f6fe4382b8cbfb6a1f323cefd16a9e3e8db28e6a6d9cc9be525d341ec7d65d45568756e1cf4366ed3b0a29559657b727459d11027cc8a96a2bb6b2bdcaaf84c7917d8a2d78784442881226b48976ab4ea2151e29cb0 Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p ============================================================= hex ==== 9609a914f8c1a2bc1a9edd79c22885ef5935aaf639af97e7b4d36d6f7f6a9316bf3d6df42897f96f033053ccedb39c1fe314906458cea245e605c36e4be8ff4241c6d1591e73466788264ee02a8ad746a1a142c59647effb007bfed2d16f6d795a563bc5a0aa081e8ee5cebf0ea534d24219357d2de3ebba1b796635e6aee140 Plaintext: ====================================================================== Message: m ============================================================= hex ==== Ciphertext: c = m^e mod n ============================================================= hex ==== Time to encrypt the message (m): ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key A: ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key B (CRT): ============================================================= sec ==== (*) Keep this information secret! |
![]() |
![]() | #15 (permalink) |
No Life Poster ![]() ![]() ![]() ![]() ![]() Join Date: Dec 2006 Location: yes
Posts: 815
Member: 420658 Status: Offline Thanks Meter: 249 | This is at the moment "record"... need to beat... 50 % match of 256 Byte Modulus... So I have 128 Byte... IMHO my p is tooo big... because +1 and calculated Modulus is bigger... I will try with smaller p but still with beginning F... And q with E... Code: Prime number (Bitsize: 1024) (*): p ============================================================= hex ==== fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee1 Prime number (Bitsize: 1024) (*): q ============================================================= hex ==== e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8cf0 Modulus (Bitsize: 2048): n=p*q ============================================================= hex ==== e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf405f0c946efe2a6b54135c2a257f284fe8085f4b209501e4c05326f1fe8f5cb38d559cf4c8a83201b77b60a9c72fe5e6453b765f93dd5804873b9f2d35fd4e680fe87078fa6db459abd9da409bc22ef409e5d0cf4d1132113b8a2d077658cdd7fef9158a6d4fd9d49fe26db455884f36c96f4f951f60656fa85347471e13cfef0 Euler's phi(n) function (*): phi(n)=(p-1)*(q-1) ============================================================= hex ==== e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf2252e47bf9a32d3e360a81f2fd7cecb084f0515a8d84942f9549a14877dd76e4584ec688d07df74f5353ab08eb8f81e7f6fa8dfa3965b26a3afe48510c41167c0c653c3cbea563ced57b2b4aa5389a27bb6ffb75eec9012eba68c30a2a0c6717300754f261347a414bb3f135688feb966b960dda533897bda63c608073d017320 Public exponent: e [1 < e < phi ; e and phi are coprime] ============================================================= hex ==== 10001 Private exponent (*): d=(e^-1) mod phi ============================================================= hex ==== 11b5c1d7141d62933f0a6a129f9e310d012192717af77b58aca99499e5f6e2841996453e59e0e39f84258c1700cd754367e4ed18dab57d52ca4b8af686a784d9489461868ed83cb2cd111203868e6dca2620e8998304009d8faf50b0c7408b4b099c3ff37150116eecf2ae8256bfd0da9d770a2736bbf7d8344a2b28cc00152ae35b1e342ec64a83e41ddb373dde01898a107080796a6c68910e03081a165b8e06c74a05b2d51cb625979649e8b14455ee4a7434c3a833073ad8dad3535fbbb928e778ca1c90e7041ca0ec336f99acbfeacf83776b547ee92a9a694aa7387bc0000d3e4b55c193603ed0dd89380a3a39a9e9c40d3c5e5ceffc64a2454fbd4981 Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1) ============================================================= hex ==== cfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd52f41 Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1) ============================================================= hex ==== 56b5530925da6dc7800cc46890dcb78a2df0dc9a8c2a6c044b928b28cff267c38a5c9a4df995309ad2fd0971d03946ff03a842d4da868dfccd7c121b08c273acae41c0bbcb87bb2041f84f9e8c18d0100a7dec5da64994f58a7ce5ee4c778c09b55928a55e95d86d5ec15255640411705fda1a8f1c7cd48061c55ad80d41d80e Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p ============================================================= hex ==== bc69933ea5bf75af624244eedce49bdcce6f0cf73cbebbc105510473d9e2efc5d05cdf4aa66655836dea53ea470af277b13ff9f556e0f93ced212465f2187efa1e6c1507c2fae4210a1acf3ffd91e06feed7e0536c65dc03cc7855c84ef019f3f5684e07a36bd3b032a3cec35836907ca70b793e5a1db49005bfb46c7f340e5c Plaintext: ====================================================================== Message: m ============================================================= hex ==== Ciphertext: c = m^e mod n ============================================================= hex ==== Time to encrypt the message (m): ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key A: ============================================================= sec ==== Time to decrypt the ciphertext (c) with the private key B (CRT): ============================================================= sec ==== (*) Keep this information secret! Goal is to check how close I can get to my Target Modulus... with stupid Luck... To check if maybe Private Exponent can be Bruteforce... Again. This Modulus is from 2013... inside Root CA Cert... DRK chain... Best Regards |
![]() |
The Following User Says Thank You to adfree For This Useful Post: |
![]() |
Bookmarks |
Thread Tools | |
Display Modes | |
| |
|