GSM Shop GSM Shop
GSM-Forum  

Welcome to the GSM-Forum forums.

You are currently viewing our boards as a guest which gives you limited access to view most discussions and access our other features.
Only registered members may post questions, contact other members or search our database of over 8 million posts.

Registration is fast, simple and absolutely free so please - Click to REGISTER!

If you have any problems with the registration process or your account login, please contact contact us .

Go Back   GSM-Forum > Other Gsm/Mobile Related Forums > GSM Programming & Reverse Engineering

GSM Programming & Reverse Engineering Here you can post all Kind of GSM Programming and Reverse Engineering tools and Secrets.

Reply
 
LinkBack Thread Tools Display Modes
Old 03-19-2023, 05:45   #1 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Samsung EngineeringMode... eToken



Noob need some help with research...


DRK chain... CertS... RSA 2048...

CN EngineeringMode...



Code:
rootca.der
aka
SamsungDeviceRootCAKey_RSA2048.der
aka
SamsungDeviceRootCAKey_RSA_2048.der
aka
...

Maybe I need some AES CTR exercises... seems DASEUL crypt something...


Maybe somebody can help my tiny brain...


Thanx in advance.


Best Regards
  Reply With Quote
Old 03-29-2023, 23:55   #2 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Tiny progress...


Only as info...


Best Regards
Attached Images
File Type: jpg 1certFromDRKChain_v1.jpg (49.2 KB, 166 views)
File Type: jpg detailOverview.jpg (145.3 KB, 118 views)
File Type: jpg KnoxIDrequired.jpg (81.5 KB, 111 views)
File Type: jpg update.jpg (145.5 KB, 106 views)
  Reply With Quote
Old 04-02-2023, 04:16   #3 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Meanwhile found the Kiwibird Cert + private Exponent...


So for older steady.bin I have 2 certs and 2 priv exponents to play with...




Only as info.


Best Regards
  Reply With Quote
Old 04-10-2023, 20:22   #4 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Please need help.


For tiny experiment I need Tool or script to create big Prime Numbers in HEX...
128 Byte lengths


The idea is BETWEEN:


Code:
A000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
and maximum 128 Byte lengths "content":


Code:
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
And store result in file... would be perfect...




I have "few" Tools to this by stupid clicling... and random... but I need ALL primes...


Example for few big Primes in this "dream area":


Code:
F06E83B71E1565AC17274E245771A672347AE49AE1CAA25BDB06C0F3B172DE442BB55B0AB813D363D99C4A748F382299668EE49A3AC599E1927E50ADB64EA4AFFDBF6509839B7E1ABFAF367CE77A0D07869B6A90DC8A097B899D25BF78AB52B67BA47DCDE1386C407898D969AF7E19B87CDB031831CA500D77E44641C9D31967


F32C5F9E36BE948AEB8F387ACD4630FFBF31593A2CE2384338FBE2A592A36E1A529B82BF48707D10E2130DD6784E9A7D4D021A8785ED03C0E4D0A880B27E0FA1ECB8D7D69C298521DB6B3DA5CBC2DB75F178B00C009CCC145030B46CC9402B793C768E7B1FCCF366A4FFB4880F3BB182A12F983941E32F4794FFA4111336FE3B


F3C0626C1B75DE0F323E11225E196A56B631438EDAC6E7156E5F8EFAF1EC426EFE713664F227C33445F73116E2932B1364738B08FCCB10B8CC29C21937CAF44934981EBC02CF27E749E27D9A22E6E02D252FA3538D3637F3681179CD865358AE047063A5A5D32FEAE8EAE7D7ABA809B652BFCAEC0BABE130797591F4CFC81689


F41597837785A0C83789CFDE0A1E05BC053C6328F6F435B4C6F9678640B42790DE6CE8C0467CDBB0A2D238B429DF66CFBA6DC8645283C4A27D3CD29C5E52B108ED97310648DB0962E6A1721AE50CD6FBB1C8DC018751B5A29A423C78D5CB9B2B61E6B00E44D931EDCE971D092450D7561E892DC6B4AB3099EBCC36EB12272FAF


FF933182932492BFB4928D3BED4496AEA9E89A254D6EE3E2D8741770CEDED7A1F5EA846E0BF30D7A191D60C086898D976B5A2547B7FD4F345502DD378068349569756AD6AD4C96B826D4CE966477D6A9E23582DEB7E050CCE3B858D92254F02AEBC7B0E7F57C46B1ED7DCBC43810E74626E72A520FD749BFB6D1FCA8D53EF9CF

Thanx in advance.


Best Regards
  Reply With Quote
Old 04-18-2023, 09:40   #5 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Interesting example for "random" Cert/Key creation from DRK world...



I am too lazy for all RSA 2048 Modulus... but here few:
Code:
8C5B29DBE2165F2B95A85F1DF9107D9F844D2FCBB87C283569D1DA98182C5CE99799E1E1F802FC213EE5E65F885E7AA0B7DB4206F246C36781C2A9D854D1014AA3A3F601C179ED09AC419AF58594BE5E997B340FB195CCDE116D6EB55EABEA25923CD54CACF672D3303DFA2CDCD0CB74F06C5FB78726389BAD407EAE484BFEAB6083830190A28646577D4EAF88C2D8C837C642202BB5F65E8508CF261A20DE1D1D11F6E0195EDF7B0FA5AD5D97CBCECF207EB9268AB4500345E5A712411460C387CE0A5733D9EAC572171D23D2299B2365D1BAEF386878BE391A4E95BFEC686955F430084E50CE739B7954FD800E6DDCB424B67DFD037072D21FA3D2AA51C42F


8C5B29DBE2165F2B95A85F1DF9107D9F




915A0131844C32F9DCAD00B0D65749F0E9AAB55ECDD96454998C3794D859D60209AA85A3968C16EFEE69BE3D3FD90DDA97E853F50C9DF384B1AEEE67F5D9F43A6F098FA2B045659738C94AFB143024E73E53131B41EE12BA2A1269D1FBB604B2EC64466F2E6D4BE5190478FC35C49F6C067D7F0AEFE3A46ED2E67C31516460FCFC84CA6DDC926A34AB04FF1665B20E4049CF1B5FE1595BC661075C731389BE202409FC1D22ABD9424F7F3E7D563C14DF573231C374EBDF76D6695B320568587FD683643BE798EF8AA5CDD60FBEB90B825CCCF68ED3F15F498CA60DBB523D72C6ABC1CB8D57906B66055B57031AD43E817C61C35F846A2AEA85F5F0FBFF15AD9F


915A0131844C32F9DCAD00B0D65749F0






90802DFB83CAE83D812BEC9FB2469E8CAA33BE63AD95E41AFDCECEFA40A869B34204F56819DDDCEF31D6FC565D473A5AE0E460F10EBF7401E0AC9A98F3094C369EE136841CCB84F1D5D05D41B7EB8A9A771E228BE40D32D92A093FB90D623A5148D2320BF39500543BDD8649B38FB598B8644ECB85BE45520BDDD7468D8960FA338845B97D0A598915DB7E08478EC0CB67065F4EEE0A29318DE53C7958E3538E321AB79F5EC2EEEA650CCEA9BBCBB942B74440305EF02431D12C6411A6AB7F3F1A1FDF8BBF7899EEEBF8990DC3C6E59A8218D10BA16C8BC2A8FEFDAAB995891607969453B6A3B7FE6CF6B79478F57D236996D2F766698BF816BC737B6EC55773


90802DFB83CAE83D812BEC9FB2469E8C




98D83948C4F6A201DA6113DB41DDED71B9863D801B7ACB6EBDC85DA24839F18A30FB72CF439657BFB6AC70BF53B7E02FB3C13547886C7A9E1559C1E1ECF3A048D620013E52BD39A50C1134E539F2376EB4048ADE98E134B05E22967AB82996AC309B992F382905970743222B82686179D0229A43D74D150BA30AD665D180616904F90ED9D0272C9EC3DC1A52181B5CC5CF1E1ECC4BAAA696FA03256402DFD0D5AF554CAA289FD4D721B790A098AA9CB8864E7B2B611FF9EF4C13566CE10834E3697CE8E84ED2D5A95FAFC374D3AEFAF9E0FA4E28C1EADC2D4E6AFE7199012553FC249962B531F571F9E4FEF550C298C08257A9FCFD6F02458BB9954360B5450D


98D83948C4F6A201DA6113DB41DDED71




8C2B18B2309E68B299B12715FAEBFBD51C1287F4F0CD6E38BB8F930DD0759CD97854E3C1EB885974F5BB6C29410FCFD060D2A3664ABDF2E6D0DE3464FCE55192B5943D9E34966FF91450D92CB97B108E68AC24CA30D36B5CB2CD84FC85602B602A65CB3D2E46775896F41E44257D1FB0AFECAFDAB9BBA5B2FA46FF0D2A7A732778889D7917DC965B956BD45441FBBB85463F50605E4A34C7A0BF8647514DBF1721F362C4DB02EEFA0DDB01ADD5B48CD76952FBA79C139A721F434B378E5E98FD54343111412CDB0AE06211E6AD3CF62B117F7778B7D5BE5F4788106F9E7A096FF650A3C9223A2046739F7D778F70434E56C0EB0F4D4D960F8D0C4B3FDCA38919


8C2B18B2309E68B299B12715FAEBFBD5




8797CACD8DA48C9BF4CDD49D4A5262CF8FD29722AB646F8FE229DCF1954589F706711F8C3DF736668D5AE12F3E7782C49011E2FEE7A7C576910FFC9624E783A272DB8630125EF325C4A1D815946D3FF7104218CB439F34629C8338D782E297C4D396721325C8B30D352316CC7C14C38FC6CF40386B7A6379F291DD3F0563BCA202EE609B7B37B0E72D44D1A0F7C3FA05944DFE9D4206547FFA7A224077CD1A5E7A15F93174E63AEECF2E6B73578271892BFD45035E3C7BEED7A8853BC07F2F1C39E6EE5BF4157A08A0BBFDB78A05C9B2F7E1542EBEA59D396E9D9DA4E2E04EBB1F5134EDD2BD220AC0B5BC35CE3CC287372108FA0460AA0138DE40A6BD118D2D


8797CACD8DA48C9BF4CDD49D4A5262CF




858BDA623ABC915F14DAC317942CF4E5A955CD70CC4D551ABBA6117733FA9BDF376A3E1621C6474306BB98B0EDD19BA4364A8667D15895F99FFBBE0AB8C2A3B692B70E378EF837F116E37D1F21D47B6E31241D2CB942C20F6302E32068A786AC68437F63DCA762BCC7C7CB920320D878948F29EFD048FAAA03D37AA9EFBC0A2A585750C11FF2FFEEC3943C9F68004008BA72DC72A594665927138EDDCE5546BD59F7D2FF00BBD7353FD1E1A98EC6D2D5A743EFE4250263F62F0233F9327A2FF20CF9938D041E3B8D071357E694773C53DB45FBC1D3065C878E73BBE777C2A3BCD3FE5D383B9B233DAAE138DF8D6F8C4E2EA041091470F771CC76798B517F3F0F


858BDA623ABC915F14DAC317942CF4E5

The shorter is 16 Byte as Search HEX value or text string... instead the 256 Byte Modulus...


Only as info...


Best Regards
Attached Files
File Type: zip random_DRK_CertKeyExample_v1.zip (19.2 KB, 67 views)
  Reply With Quote
Old 05-17-2023, 21:58   #6 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
I have NOT many device(s) at home for tests...


Photos from my SM-A202F Bootloader Version U3.


ENG and Custom Mode no idea yet... maybe better if Knox not 1...


But FACTORY BIN ALLOWED tested successfully by flashing different Combination Firmwares...





I have NO luck yet with my SM-G965F Bootloader Version UH aka 17
Tested also SH is also 17... but also no success...
I can not downgrade nor find Combination Firmware for BL Version 17... only 11 leaked...


Only as info of progress...


Best Regards
Attached Images
File Type: jpg smA202F_U3_CustomAndFAC_v1.jpg (51.2 KB, 72 views)
File Type: jpg smA202F_U3_ENG_v1.jpg (89.1 KB, 60 views)
  Reply With Quote
Old 05-25-2023, 14:22   #7 (permalink)
Junior Member
 
Join Date: Jun 2019
Location: nanpara
Posts: 14
Member: 2912966
Status: Offline
Thanks Meter: 2
check this link
https://shorturl.at/abpAU
  Reply With Quote
Old 05-25-2023, 22:30   #8 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Quote:
Originally Posted by gitanshu.bansal View Post
check this link


No idea... If I click...


Website force me to enter my Google Account...


Something with "Blogger"







Best Regards
  Reply With Quote
Old 05-31-2023, 03:23   #9 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Code:
Prime number (Bitsize: 0) (*): p
============================================================= hex ==== 
F5870E6F89EB6D4F1F30DCF994508385B53F2609A4C3C8749E37019E959190B51D99AB7F29A3C4FE583BD118AA1BD662B4795ABCF7646B06EBD447152FC51604202EA498C4AFE6DFBBC5016DC166E114CA38E6B82D1B7392D8C30D68B3D956BD9B2D4ADBF3FA3B74254F81F0C0EB7C5E7C99ACC5A05E9C146AEAF9AEF4798D95

Prime number (Bitsize: 0) (*): q
============================================================= hex ==== 
EA58AF11D3137E8B192002E791D7284054FE79BC8628AB589A34B9039A5127CA25E1A8B9CB05E0F926DF8B63847C57FA5362AE4FEF2511F3A2F493D506FB972323D5D4ED5E5F30F27A170FC5A88D75DBA8D35684BE9C22D28E9235C60035FBBAFC86E27ABCF1269BB38B8B198B8FE8EE728FA569097B4285481F53D5F340AF88

Modulus (Bitsize: 2048): n=p*q
============================================================= hex ==== 
e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf38b901d6d0c79b4f8ea6a25cb2a94c21d368837a00332fb5e458aa580959ac655c8992a9039f0321d59b320cbc04f1b40b37df34d0ee1653cce23a67685493932eef27ae0d102291843323aebfc3ddc24bcd055cfd966cdc9f902666c66001e9cd85912368a4d9b6bc65b6324c7560b3813aff62b7831e076ca64d9d1cc9c1228

Euler's phi(n) function (*): phi(n)=(p-1)*(q-1)
============================================================= hex ==== 


Public exponent: e [1 < e < phi ;  e and phi are coprime]
============================================================= hex ==== 
10001

Private exponent (*): d=(e^-1) mod phi
============================================================= hex ==== 
535e325775a41b09b846314b46567a22e4a7cd93063969ded91c19f6913d18f33370f0fcb64369376ecf7c4ebd22964e9b7cfbbd07bb2d471d50ac3ed4320670dc27bfc9f9c24abeaea01f1bff9b654b601a51a5a0b62fe913148b428b9ea1f386399b18c44170679e22851982a6621d4cdc240bc7b4323f4fc73ab5afa75ab8509bc268949571c64dff6bdc6ab9dfe083d043550d90d3b62cecbbe7b44939f0c93d91049bf098096e747edf98c8064448a46d5450e292870822f07f619dea7c657194d502d2b72489cbdcfbd65f28e6853a1477636c6b9a85227880e8e0cd87e0e688f2b31a68f63d392e36f23ce9f037832d8e972733c1c368d5c3abde4c7d

Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1)
============================================================= hex ==== 
8cd698e04053ec92db48732932fb70464d6e58ca6559eced8027fb64d554f795fcd1be3f264a8be07e0a69e9e5022cdad7bd58e05664a2c40898eee167527d4b868e5ada4ad0bff58cc6f807d64dc644dfaefe219db6467870a08a5b89f6dcbbcc7c919953fd310771b386ccec4ce83d66e9dbe24d18981d5a2b496823526a75

Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1)
============================================================= hex ==== 
3c242451cbbcbe060e9da38130716a381057fa8002621f8f2e8c074b40684170e485e41a425b30e06034907e2abb0a8d08a7539ada01c678a342674a0d6fb5dae3d075c3b12b76d153b9e5675199743cba37fa8538b1b3521c1ab3c82bb7aef1ceeb02e682e4d486b2ee45f57956a66dc362d00d83cc6946f13a70f680660266

Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p
============================================================= hex ==== 
485871831a67bf7a19de16bee8de83079cc72cebfeff90649c414a719236312ec29faf4fb06127dabba51909f6b5e09c73a684eca0dcba032e79156a47723ed0c6f40f95880c412c203724a2b43b75826ee229e43da24a979fb0de2a91fde360608c16d572ab8a4940c8d9e62146df8efd0e9c45ff5b3b4faee72ee3d536992f

Plaintext:
======================================================================


Message: m
============================================================= hex ==== 


Ciphertext: c = m^e mod n
============================================================= hex ==== 


Time to encrypt the message (m):
============================================================= sec ==== 


Time to decrypt the ciphertext (c) with the private key A:
============================================================= sec ==== 


Time to decrypt the ciphertext (c) with the private key B (CRT):
============================================================= sec ==== 


(*) Keep this information secret!

Tiny progress...





Best Regards
  Reply With Quote
Old 05-31-2023, 03:25   #10 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Code:
Prime number (Bitsize: 0) (*): p
============================================================= hex ==== 
F5870E6F89EB6D4F1F30DCF994508385B53F2609A4C3C8749E37019E959190B51D99AB7F29A3C4FE583BD118AA1BD662B4795ABCF7646B06EBD447152FC51604202EA498C4AFE6DFBBC5016DC166E114CA38E6B82D1B7392D8C30D68B3D956BD9B2D4ADBF3FA3B74254F81F0C0EB7C5E7C99ACC5A05E9C146AEAF9AEF4798D95

Prime number (Bitsize: 0) (*): q
============================================================= hex ==== 
EA58AF11D3137E8B192002E791D7284054FE79BC8628AB589A34B9039A5127CA25E1A8B9CB05E0F926DF8B63847C57FA5362AE4FEF2511F3A2F493D506FB972323D5D4ED5E5F30F27A170FC5A88D75DBA8D35684BE9C22D28E9235C60035FBBAFC86E27ABCF1269BB38B8B198B8FE8EE728FA569097B4285481F53D5F340AF88

Modulus (Bitsize: 2048): n=p*q
============================================================= hex ==== 
e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf38b901d6d0c79b4f8ea6a25cb2a94c21d368837a00332fb5e458aa580959ac655c8992a9039f0321d59b320cbc04f1b40b37df34d0ee1653cce23a67685493932eef27ae0d102291843323aebfc3ddc24bcd055cfd966cdc9f902666c66001e9cd85912368a4d9b6bc65b6324c7560b3813aff62b7831e076ca64d9d1cc9c1228

Euler's phi(n) function (*): phi(n)=(p-1)*(q-1)
============================================================= hex ==== 


Public exponent: e [1 < e < phi ;  e and phi are coprime]
============================================================= hex ==== 
10001

Private exponent (*): d=(e^-1) mod phi
============================================================= hex ==== 
535e325775a41b09b846314b46567a22e4a7cd93063969ded91c19f6913d18f33370f0fcb64369376ecf7c4ebd22964e9b7cfbbd07bb2d471d50ac3ed4320670dc27bfc9f9c24abeaea01f1bff9b654b601a51a5a0b62fe913148b428b9ea1f386399b18c44170679e22851982a6621d4cdc240bc7b4323f4fc73ab5afa75ab8509bc268949571c64dff6bdc6ab9dfe083d043550d90d3b62cecbbe7b44939f0c93d91049bf098096e747edf98c8064448a46d5450e292870822f07f619dea7c657194d502d2b72489cbdcfbd65f28e6853a1477636c6b9a85227880e8e0cd87e0e688f2b31a68f63d392e36f23ce9f037832d8e972733c1c368d5c3abde4c7d

Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1)
============================================================= hex ==== 
8cd698e04053ec92db48732932fb70464d6e58ca6559eced8027fb64d554f795fcd1be3f264a8be07e0a69e9e5022cdad7bd58e05664a2c40898eee167527d4b868e5ada4ad0bff58cc6f807d64dc644dfaefe219db6467870a08a5b89f6dcbbcc7c919953fd310771b386ccec4ce83d66e9dbe24d18981d5a2b496823526a75

Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1)
============================================================= hex ==== 
3c242451cbbcbe060e9da38130716a381057fa8002621f8f2e8c074b40684170e485e41a425b30e06034907e2abb0a8d08a7539ada01c678a342674a0d6fb5dae3d075c3b12b76d153b9e5675199743cba37fa8538b1b3521c1ab3c82bb7aef1ceeb02e682e4d486b2ee45f57956a66dc362d00d83cc6946f13a70f680660266

Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p
============================================================= hex ==== 
485871831a67bf7a19de16bee8de83079cc72cebfeff90649c414a719236312ec29faf4fb06127dabba51909f6b5e09c73a684eca0dcba032e79156a47723ed0c6f40f95880c412c203724a2b43b75826ee229e43da24a979fb0de2a91fde360608c16d572ab8a4940c8d9e62146df8efd0e9c45ff5b3b4faee72ee3d536992f

Plaintext:
======================================================================


Message: m
============================================================= hex ==== 


Ciphertext: c = m^e mod n
============================================================= hex ==== 


Time to encrypt the message (m):
============================================================= sec ==== 


Time to decrypt the ciphertext (c) with the private key A:
============================================================= sec ==== 


Time to decrypt the ciphertext (c) with the private key B (CRT):
============================================================= sec ==== 


(*) Keep this information secret!

Tiny progress...





Best Regards
  Reply With Quote
Old 05-31-2023, 03:28   #11 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Code:
Prime number (Bitsize: 0) (*): p
============================================================= hex ==== 
F5870E6F89EB6D4F1F30DCF994508385B53F2609A4C3C8749E37019E959190B51D99AB7F29A3C4FE583BD118AA1BD662B4795ABCF7646B06EBD447152FC51604202EA498C4AFE6DFBBC5016DC166E114CA38E6B82D1B7392D8C30D68B3D956BD9B2D4ADBF3FA3B74254F81F0C0EB7C5E7C99ACC5A05E9C146AEAF9AEF4798D95

Prime number (Bitsize: 0) (*): q
============================================================= hex ==== 
EA58AF11D3137E8B192002E791D7284054FE79BC8628AB589A34B9039A5127CA25E1A8B9CB05E0F926DF8B63847C57FA5362AE4FEF2511F3A2F493D506FB972323D5D4ED5E5F30F27A170FC5A88D75DBA8D35684BE9C22D28E9235C60035FBBAFC86E27ABCF1269BB38B8B198B8FE8EE728FA569097B4285481F53D5F340AF88

Modulus (Bitsize: 2048): n=p*q
============================================================= hex ==== 
e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf38b901d6d0c79b4f8ea6a25cb2a94c21d368837a00332fb5e458aa580959ac655c8992a9039f0321d59b320cbc04f1b40b37df34d0ee1653cce23a67685493932eef27ae0d102291843323aebfc3ddc24bcd055cfd966cdc9f902666c66001e9cd85912368a4d9b6bc65b6324c7560b3813aff62b7831e076ca64d9d1cc9c1228

Euler's phi(n) function (*): phi(n)=(p-1)*(q-1)
============================================================= hex ==== 


Public exponent: e [1 < e < phi ;  e and phi are coprime]
============================================================= hex ==== 
10001

Private exponent (*): d=(e^-1) mod phi
============================================================= hex ==== 
535e325775a41b09b846314b46567a22e4a7cd93063969ded91c19f6913d18f33370f0fcb64369376ecf7c4ebd22964e9b7cfbbd07bb2d471d50ac3ed4320670dc27bfc9f9c24abeaea01f1bff9b654b601a51a5a0b62fe913148b428b9ea1f386399b18c44170679e22851982a6621d4cdc240bc7b4323f4fc73ab5afa75ab8509bc268949571c64dff6bdc6ab9dfe083d043550d90d3b62cecbbe7b44939f0c93d91049bf098096e747edf98c8064448a46d5450e292870822f07f619dea7c657194d502d2b72489cbdcfbd65f28e6853a1477636c6b9a85227880e8e0cd87e0e688f2b31a68f63d392e36f23ce9f037832d8e972733c1c368d5c3abde4c7d

Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1)
============================================================= hex ==== 
8cd698e04053ec92db48732932fb70464d6e58ca6559eced8027fb64d554f795fcd1be3f264a8be07e0a69e9e5022cdad7bd58e05664a2c40898eee167527d4b868e5ada4ad0bff58cc6f807d64dc644dfaefe219db6467870a08a5b89f6dcbbcc7c919953fd310771b386ccec4ce83d66e9dbe24d18981d5a2b496823526a75

Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1)
============================================================= hex ==== 
3c242451cbbcbe060e9da38130716a381057fa8002621f8f2e8c074b40684170e485e41a425b30e06034907e2abb0a8d08a7539ada01c678a342674a0d6fb5dae3d075c3b12b76d153b9e5675199743cba37fa8538b1b3521c1ab3c82bb7aef1ceeb02e682e4d486b2ee45f57956a66dc362d00d83cc6946f13a70f680660266

Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p
============================================================= hex ==== 
485871831a67bf7a19de16bee8de83079cc72cebfeff90649c414a719236312ec29faf4fb06127dabba51909f6b5e09c73a684eca0dcba032e79156a47723ed0c6f40f95880c412c203724a2b43b75826ee229e43da24a979fb0de2a91fde360608c16d572ab8a4940c8d9e62146df8efd0e9c45ff5b3b4faee72ee3d536992f

Plaintext:
======================================================================


Message: m
============================================================= hex ==== 


Ciphertext: c = m^e mod n
============================================================= hex ==== 


Time to encrypt the message (m):
============================================================= sec ==== 


Time to decrypt the ciphertext (c) with the private key A:
============================================================= sec ==== 


Time to decrypt the ciphertext (c) with the private key B (CRT):
============================================================= sec ==== 


(*) Keep this information secret!

Tiny progress.


Only as info....


Best Regards
  Reply With Quote
Old 06-03-2023, 07:24   #12 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
https://github.com/shakevsky/keybuster




Maybe somebody knows keybuster and/or allready have libterrier aka Reactivation Lock Primes and/or Private Exponent...







Best Regards
  Reply With Quote
Old 06-17-2023, 02:34   #13 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
I still need 1024 bit prime generator...


Maybe here:
https://pypi.org/search/?q=big+primes&o=


https://pypi.org/search/?q=prime&o=


Best example I found. But not for big primes...
I need few primes in range...


https://www.mobilefish.com/services/...or_checker.php

Quote:
This tool allows you to generates a list (50 till 1000) of small prime numbers up to 11 digits long. The largest start number you can enter is 10,000,000,000. The generated prime numbers can be converted into binary, decimal, hexadecimal or base64 encoding schemes.


Maybe somebody could help me.


Thanx in advance.


Best Regards
  Reply With Quote
Old 06-18-2023, 10:27   #14 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
Hmmm....


This looks funny....


Need to be confirmed but...


Maximum 1024 bit Integer seems Prime...


And why Prime 2 looks like 50 % of Modulus?


Code:
Prime number (Bitsize: 0) (*): p
============================================================= hex ====
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF


Prime number (Bitsize: 0) (*): q
============================================================= hex ====
E0C2818755AFD2D1E08DA3728023B9F63180DF093106DB52B0985A986B1E5CF3506D66BF82A3AB26427B5A0DBA063FE4E40E8655A77A59A4C3D56DC29BC37EC0383343C3BC8508AD65EAEF5F68994CC4E75D5595E4830E2812169FD4C4C66C0CEF1C0980C1B5F93542E7C7EECF863A05DD941BACC27CDB20216E6C6AA43B8BF4


Modulus (Bitsize: 2048): n=p*q
============================================================= hex ====
e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf31f3d7e78aa502d2e1f725c8d7fdc4609ce7f20f6cef924ad4f67a56794e1a30caf9299407d5c54d9bd84a5f245f9c01b1bf179aa5885a65b3c2a923d643c813fc7ccbc3c437af7529a1510a09766b33b18a2aa6a1b7cf1d7ede9602b3b3993f310e3f67f3e4a06cabd1838113079c5fa226be4533d8324dfde9193955bc4740c


Euler's phi(n) function (*): phi(n)=(p-1)*(q-1)
============================================================= hex ====




Public exponent: e [1 < e < phi ;  e and phi are coprime]
============================================================= hex ====
10001


Private exponent (*): d=(e^-1) mod phi
============================================================= hex ====
69f1c574b1a34b50baf488d2f42be300759d3584f3a333c6ea8f26452a59099f778dda1cf3cb8a6562791a9dd5ce14582457e46283ab5c8e19f184e772dcd7e66b975e9de9431c30001699f6f32b2fd0b0ee81e541edb4c296a42b7af3b64440648566c5568a1c8a4a9b4ed6f6e3627e594ff32ba0119288b6b982495258ef422c1d75159cba695d8a17ee5917a939fe14c694f518ba98712ae2b374ab4eecc010e54bc51869eb343b0ecac35464d74eb7513739f8aa46e2cc1df6301a47503228d242c32d7ac79effd3cc1119aaa05d9e23fc347c259679d2b8a9091894777e36f6327452ecc6ea6aca6251123a3b024d6119a7bfdddaed928dfb6c5b4f2179


Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1)
============================================================= hex ====
ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff


Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1)
============================================================= hex ====
76d0bc12a40c878125991a9f8bf7d6f5bbe3a9843d63a78bc609345340c55353d8df8ca28ed820c0e0023f6fe4382b8cbfb6a1f323cefd16a9e3e8db28e6a6d9cc9be525d341ec7d65d45568756e1cf4366ed3b0a29559657b727459d11027cc8a96a2bb6b2bdcaaf84c7917d8a2d78784442881226b48976ab4ea2151e29cb0


Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p
============================================================= hex ====
9609a914f8c1a2bc1a9edd79c22885ef5935aaf639af97e7b4d36d6f7f6a9316bf3d6df42897f96f033053ccedb39c1fe314906458cea245e605c36e4be8ff4241c6d1591e73466788264ee02a8ad746a1a142c59647effb007bfed2d16f6d795a563bc5a0aa081e8ee5cebf0ea534d24219357d2de3ebba1b796635e6aee140


Plaintext:
======================================================================




Message: m
============================================================= hex ====




Ciphertext: c = m^e mod n
============================================================= hex ====




Time to encrypt the message (m):
============================================================= sec ====




Time to decrypt the ciphertext (c) with the private key A:
============================================================= sec ====




Time to decrypt the ciphertext (c) with the private key B (CRT):
============================================================= sec ====




(*) Keep this information secret!
  Reply With Quote
Old 06-20-2023, 07:51   #15 (permalink)
No Life Poster
 
Join Date: Dec 2006
Location: yes
Posts: 780
Member: 420658
Status: Offline
Thanks Meter: 212
This is at the moment "record"... need to beat...




50 % match of 256 Byte Modulus...


So I have 128 Byte...




IMHO my p is tooo big... because +1 and calculated Modulus is bigger...




I will try with smaller p but still with beginning F...


And q with E...












Code:
Prime number (Bitsize: 1024) (*): p
============================================================= hex ====
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee1


Prime number (Bitsize: 1024) (*): q
============================================================= hex ====
e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8cf0


Modulus (Bitsize: 2048): n=p*q
============================================================= hex ====
e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf405f0c946efe2a6b54135c2a257f284fe8085f4b209501e4c05326f1fe8f5cb38d559cf4c8a83201b77b60a9c72fe5e6453b765f93dd5804873b9f2d35fd4e680fe87078fa6db459abd9da409bc22ef409e5d0cf4d1132113b8a2d077658cdd7fef9158a6d4fd9d49fe26db455884f36c96f4f951f60656fa85347471e13cfef0


Euler's phi(n) function (*): phi(n)=(p-1)*(q-1)
============================================================= hex ====
e0c2818755afd2d1e08da3728023b9f63180df093106db52b0985a986b1e5cf3506d66bf82a3ab26427b5a0dba063fe4e40e8655a77a59a4c3d56dc29bc37ec0383343c3bc8508ad65eaef5f68994cc4e75d5595e4830e2812169fd4c4c66c0cef1c0980c1b5f93542e7c7eecf863a05dd941bacc27cdb20216e6c6aa43b8bf2252e47bf9a32d3e360a81f2fd7cecb084f0515a8d84942f9549a14877dd76e4584ec688d07df74f5353ab08eb8f81e7f6fa8dfa3965b26a3afe48510c41167c0c653c3cbea563ced57b2b4aa5389a27bb6ffb75eec9012eba68c30a2a0c6717300754f261347a414bb3f135688feb966b960dda533897bda63c608073d017320


Public exponent: e [1 < e < phi ;  e and phi are coprime]
============================================================= hex ====
10001


Private exponent (*): d=(e^-1) mod phi
============================================================= hex ====
11b5c1d7141d62933f0a6a129f9e310d012192717af77b58aca99499e5f6e2841996453e59e0e39f84258c1700cd754367e4ed18dab57d52ca4b8af686a784d9489461868ed83cb2cd111203868e6dca2620e8998304009d8faf50b0c7408b4b099c3ff37150116eecf2ae8256bfd0da9d770a2736bbf7d8344a2b28cc00152ae35b1e342ec64a83e41ddb373dde01898a107080796a6c68910e03081a165b8e06c74a05b2d51cb625979649e8b14455ee4a7434c3a833073ad8dad3535fbbb928e778ca1c90e7041ca0ec336f99acbfeacf83776b547ee92a9a694aa7387bc0000d3e4b55c193603ed0dd89380a3a39a9e9c40d3c5e5ceffc64a2454fbd4981


Chinese Remainder Theorem (CRT) exponent 1 (*): dP=d mod (p-1)
============================================================= hex ====
cfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd5302acfd52f41


Chinese Remainder Theorem (CRT) exponent 2 (*): dQ=d mod (q-1)
============================================================= hex ====
56b5530925da6dc7800cc46890dcb78a2df0dc9a8c2a6c044b928b28cff267c38a5c9a4df995309ad2fd0971d03946ff03a842d4da868dfccd7c121b08c273acae41c0bbcb87bb2041f84f9e8c18d0100a7dec5da64994f58a7ce5ee4c778c09b55928a55e95d86d5ec15255640411705fda1a8f1c7cd48061c55ad80d41d80e


Chinese Remainder Theorem (CRT) coefficient (*): qInv=(q^-1) mod p
============================================================= hex ====
bc69933ea5bf75af624244eedce49bdcce6f0cf73cbebbc105510473d9e2efc5d05cdf4aa66655836dea53ea470af277b13ff9f556e0f93ced212465f2187efa1e6c1507c2fae4210a1acf3ffd91e06feed7e0536c65dc03cc7855c84ef019f3f5684e07a36bd3b032a3cec35836907ca70b793e5a1db49005bfb46c7f340e5c


Plaintext:
======================================================================




Message: m
============================================================= hex ====




Ciphertext: c = m^e mod n
============================================================= hex ====




Time to encrypt the message (m):
============================================================= sec ====




Time to decrypt the ciphertext (c) with the private key A:
============================================================= sec ====




Time to decrypt the ciphertext (c) with the private key B (CRT):
============================================================= sec ====




(*) Keep this information secret!

Goal is to check how close I can get to my Target Modulus... with stupid Luck...


To check if maybe Private Exponent can be Bruteforce...




Again.


This Modulus is from 2013... inside Root CA Cert... DRK chain...





Best Regards
  Reply With Quote
The Following User Says Thank You to adfree For This Useful Post:
Reply

Bookmarks

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


 



All times are GMT +1. The time now is 01:28.



Powered by Searchlight © 2024 Axivo Inc.
vBulletin Optimisation provided by vB Optimise (Pro) - vBulletin Mods & Addons Copyright © 2024 DragonByte Technologies Ltd.
- GSM Hosting Ltd. - 1999-2023 -
Page generated in 0.13758 seconds with 9 queries

SEO by vBSEO